Pratt & Whitney 3D prints aero-engine MRO component with ST Engineering

“3D printing will be a game-changer for the MRO industry worldwide.”

Pratt & Whitney is set to introduce a 3D printed aero-engine component into its maintenance, repair and overhaul (MRO) operations by mid-2020 after a successful collaboration with ST Engineering.

ST Engineering MRO

The two companies came together to leverage 3D printing technology to facilitate faster and more flexible repair solutions, with contributions also coming from Pratt & Whitney’s repair specialist Component Aerospace Singapore.

Component Aerospace Singapore provides engine part repair for combustion chambers, fuel systems and manifolds; ST Engineering boasts ‘production-level 3D capabilities’ and experience applying 3D printing in land transport systems; and Pratt & Whitney is a specialist in design and engineering.

Read more

100 3D printing experts predict the future of 3D printing in 2030

3D Printing Industry asked 100 additive manufacturing leaders to identify how 3D printing will develop during the next ten years. In our article last week, we took a look at the near term trends in 3D printing to watch for 2020. This new article draws on insights from additive manufacturing experts across the globe to understand where our industry is heading.

Will AM herald the disruption of manufacturing as we know it? While major change is likely to be slow, with this longer time horizon, it may be useful to consider the role of governments in supporting new industries.

Trade-technology tensions persist, as do developments around export controls  – specifically the U.S. Bureau of Industry and Security’s proposed rules around Additive Manufacturing Equipment for “Energetic Materials”.

Read more

3D printing use for MRO will double: report

Dive Brief:

  • The use of 3D printing for maintenance, repair and operations (MRO) will double “in the coming years,” according to a survey of 114 respondents, conducted by Dimensional Research and Essentium, a 3D printing platform. The survey did not specify a time frame for “in the coming years.”
  • The respondents see use cases for 3D printing in various types of prototyping and parts production. Benefits of the technology include reduced lead times, cost reduction, the ability for mass customization and a competitive advantage in the marketplace.
  • Despite respondents naming cost reduction as a benefit, the plurality reported cost as the biggest obstacle to adopting 3D printing at scale. 3D printing technology and materials are too expensive, according to more than one-third of respondents.

Read more

The 2020 vision for 3D printing and digital manufacturing

“3D printing and digital manufacturing is driving a world with less waste, less inventory and lower CO2 emissions.”

George Brasher, HP’s UK & Ireland MD says the next year, and decade, will be an exciting time for additive manufacturing. 

GeorgeBrasher.JPG

2020 is set to be the year when the potential of 3D printing is realised across more industries. We’ve seen in the previous decade how 3D tech has turned traditional production models and workflows on their head, offering on-demand, bespoke manufacturing –  and presenting us with a modern model of the artisan age. This is only going to develop further as we begin this new decade.

So what are the key trends to watch out for, and where will we see the 3D industry focus its attention in 2020?

Read more

Merchant ship owners to produce spare parts on demand using 3D printing

Merchant ship owners will now use 3D printing technology. Source: Shutterstock

MERCHANT ships are massive — often spanning a few hundred feet — and have thousands of moving parts.

Given the progress made by cross-border trade and commerce post-globalization, and the recent rise of e-commerce, more than 50,000 ships undertake nearly half-a-million voyages every year.

To avoid catastrophes while at sea, merchant ships need to be serviced often. One of the major costs that merchant ship owners have to account for when it comes to maintenance is the inventory cost of spare parts given the number of spares that must be carried at any given time.

The other challenge to effective maintenance is that ships travel from one port to another during its voyage. If something needs to be repaired when it is not at its home, spares must be sent to the port where it is docked.

Read more

3D printing system used to accelerate tissue engineering research at The University of Sheffield

Formlabs, a 3D printing system manufacturer, and Dr Sam Pashneh-Tala, Research Fellow at the University of Sheffield, have developed a 3D printing technique for complex artificial blood vessels which can aid surgery for cardiovascular disease.

Conventional surgical treatments for cardiovascular disease rely on autografts, which require invasive surgery. Synthetic vascular grafts made from polymer materials are also available, but these are prone to infection and blood clotting, especially in smaller diameter vessels. A new technique is needed, and this is where tissue engineering fits in, enabling new blood vessels to be grown in the lab and then used for implantation.

Read more

ThyssenKrupp Additive Manufacturing approved for maritime supply

German multinational engineering group Thyssenkrupp has obtained certification for its supply of metal 3D printed products. The company’s Approval of Manufacturer certificate is the first ever to be awarded by leading quality assurance and risk management firm DNV GL. With the accreditation, the recently opened Thyssenkrupp TechCenter Additive Manufacturing is now approved for application in maritime and other industrial sectors.

Launching ceremony of the Class 218SG submarine Invincible. Photo via Thyssenkrupp.

“Producing components that have the same level of quality as conventionally manufactured parts and fulfil class requirements is key,” comments Geir Dugstad, Director of Ship Classification & Technical Director of DNV GL – Maritime, “At DNV GL, we are very pleased to certify that the Thyssenkrupp TechCenter Additive Manufacturing has demonstrated its ability to reliably produce metallic materials using additive manufacturing,”

Read more

Formula One and FIA use additive manufacturing to test 2021 car

Formula One (F1), the premier world championship for motor racing and its governing body the Fédération Internationale de l’Automobile (FIA), have used additive manufacturing to help determine the design, rules and regulations of its 2021 cars. 

The 50% scale F1 2021 model in Sauber's wind tunnel testing facility. Photo via Formula 1.

Each F1 season, the FIA issues new regulations for vehicles participating in the championship. The new rules are tested using prototype car models implemented. Last month, the 2021 vehicle underwent extensive wind tunnel testing using an accurate, 50 percent scale model produced with the help of additive manufacturing.

The wind tunnel tests were performed by an independent consultancy group from Sauber, a Swiss motorsport engineering company, using its own wind tunnel facility. The use of additive manufacturing to create the scale models delivered a number of benefits to the development team. Pat Symonds, F1’s Chief Technical Officer, stated “50% is a good compromise in that we can still get a good level of detail on the model but we still have distance behind. It’s true teams have tended to go more to 60% these days.”

Read more

3D printing brings new dimensions to field commissioning

Access to and use of additive manufacturing (AM), also known as 3D printing, has increased in recent years due to the expiring of patents on techniques and technologies, says Hugues Greder, Lead Petroleum Engineer at Total.

(Photo: Total)

Computing power is much more powerful and there’s also been an increase in the power of the lasers used in the AM process. While a large proportion of AM today is still for prototyping and tooling, about a third is for end uses, i.e. parts, he told the Underwater Technology Conference (UTC) in Bergen, Norway, earlier this year. And more is likely to come.

Total is keen to talk about AM after some recent success stories, including solving a problem during deepwater subsea pipeline commissioning that would have otherwise cost more than €10 million ($11.2 million) to rectify. The problem was found during the Egina field commissioning in 2018.

Read more

From kicks to cars: 3D printing is upending supply chains

As additive manufacturing goes mainstream, supply chains are presented with tough decisions. Are the speed and flexibility worth the cost?

To produce brake calipers for its Chiron supercar, Bugatti embraced additive manufacturing, creating the largest titanium 3D printed component yet.

Because titanium is so strong, it’s impossible to use the same milling and forging technology used to form traditional aluminum calipers, Popular Science reported. Instead, the part is produced from 2,213 layers of titanium powder melted by lasers for over 45 hours and then heat-treated to 1,300 degrees. The part undergoes 11 hours of grinding to ensure each component meets exacting tolerances.

Read more