Pratt & Whitney 3D prints aero-engine MRO component with ST Engineering

“3D printing will be a game-changer for the MRO industry worldwide.”

Pratt & Whitney is set to introduce a 3D printed aero-engine component into its maintenance, repair and overhaul (MRO) operations by mid-2020 after a successful collaboration with ST Engineering.

ST Engineering MRO

The two companies came together to leverage 3D printing technology to facilitate faster and more flexible repair solutions, with contributions also coming from Pratt & Whitney’s repair specialist Component Aerospace Singapore.

Component Aerospace Singapore provides engine part repair for combustion chambers, fuel systems and manifolds; ST Engineering boasts ‘production-level 3D capabilities’ and experience applying 3D printing in land transport systems; and Pratt & Whitney is a specialist in design and engineering.

Read more

3D printing use for MRO will double: report

Dive Brief:

  • The use of 3D printing for maintenance, repair and operations (MRO) will double “in the coming years,” according to a survey of 114 respondents, conducted by Dimensional Research and Essentium, a 3D printing platform. The survey did not specify a time frame for “in the coming years.”
  • The respondents see use cases for 3D printing in various types of prototyping and parts production. Benefits of the technology include reduced lead times, cost reduction, the ability for mass customization and a competitive advantage in the marketplace.
  • Despite respondents naming cost reduction as a benefit, the plurality reported cost as the biggest obstacle to adopting 3D printing at scale. 3D printing technology and materials are too expensive, according to more than one-third of respondents.

Read more

The 2020 vision for 3D printing and digital manufacturing

“3D printing and digital manufacturing is driving a world with less waste, less inventory and lower CO2 emissions.”

George Brasher, HP’s UK & Ireland MD says the next year, and decade, will be an exciting time for additive manufacturing. 

GeorgeBrasher.JPG

2020 is set to be the year when the potential of 3D printing is realised across more industries. We’ve seen in the previous decade how 3D tech has turned traditional production models and workflows on their head, offering on-demand, bespoke manufacturing –  and presenting us with a modern model of the artisan age. This is only going to develop further as we begin this new decade.

So what are the key trends to watch out for, and where will we see the 3D industry focus its attention in 2020?

Read more

3D printing brings new dimensions to field commissioning

Access to and use of additive manufacturing (AM), also known as 3D printing, has increased in recent years due to the expiring of patents on techniques and technologies, says Hugues Greder, Lead Petroleum Engineer at Total.

(Photo: Total)

Computing power is much more powerful and there’s also been an increase in the power of the lasers used in the AM process. While a large proportion of AM today is still for prototyping and tooling, about a third is for end uses, i.e. parts, he told the Underwater Technology Conference (UTC) in Bergen, Norway, earlier this year. And more is likely to come.

Total is keen to talk about AM after some recent success stories, including solving a problem during deepwater subsea pipeline commissioning that would have otherwise cost more than €10 million ($11.2 million) to rectify. The problem was found during the Egina field commissioning in 2018.

Read more

From kicks to cars: 3D printing is upending supply chains

As additive manufacturing goes mainstream, supply chains are presented with tough decisions. Are the speed and flexibility worth the cost?

To produce brake calipers for its Chiron supercar, Bugatti embraced additive manufacturing, creating the largest titanium 3D printed component yet.

Because titanium is so strong, it’s impossible to use the same milling and forging technology used to form traditional aluminum calipers, Popular Science reported. Instead, the part is produced from 2,213 layers of titanium powder melted by lasers for over 45 hours and then heat-treated to 1,300 degrees. The part undergoes 11 hours of grinding to ensure each component meets exacting tolerances.

Read more

3-D Printing and the race for space

It lets aerospace engineers develop high-quality parts much faster than they could with traditional fabrication methods

3-D Printing and the Race for Space

July 2019 marked the 50-year anniversary of the Apollo 11 moon landing. While the world has seen incredible technological and scientific strides since then, the broader space industry has been in stealth mode—exploring what’s possible, and what’s next, for humankind in space.

In 2018, the space sector grew to an incredible $3.25 billion industry. A number of different technologies are driving this rapid growth, but the most promising one is industrial-grade 3D metal printing (a.k.a. metal additive manufacturing). Once met with skepticism, 3D metal printing has proven itself to be a cost-effective and efficient way to develop production-ready parts, making it the new darling of the commercial race to space.

Read more

How 3D printing is changing production models

Additive manufacturing is no longer just for prototypes. Its increasing popularity and technical capabilities have pushed it into position to change the way manufacturers manage their spare parts inventory.

No matter how technologies change, or what new innovations break into the mainstream, the basic goals of manufacturing remain the same: Reduce unplanned downtime, reduce costs, eliminate unnecessary waste, etc. How fortunate it is that 3D printing (a.k.a. additive manufacturing) is one of those cool, innovative technologies that is finding itself a very nice spot in the realm of day-to-day cost and time savings. Not only can it be used to produce interesting and previously impossible designs, it has also become a useful way to change spare parts management.

When a system goes down, making the repairs needed to get it back up and running can be time-consuming. Even more so if the part that needs replacing is no longer readily available. With the right program in place, additive manufacturing can build that part on demand—whether through reverse engineering, digital files from the component supplier, or perhaps through the supplier itself.

In recent years, advances in the printing technology, in the materials that can be used, and the software control of the end-to-end workflow have fundamentally changed the way parts can be made with additive manufacturing, says John Nanry, co-founder and chief product officer at Fast Radius, which provides 3D printing services.

Read more

How 3D Printing is changing production models

Additive manufacturing is no longer just for prototypes. Its increasing popularity and technical capabilities have pushed it into position to change the way manufacturers manage their spare parts inventory.

No matter how technologies change, or what new innovations break into the mainstream, the basic goals of manufacturing remain the same: Reduce unplanned downtime, reduce costs, eliminate unnecessary waste, etc. How fortunate it is that 3D printing (a.k.a. additive manufacturing) is one of those cool, innovative technologies that is finding itself a very nice spot in the realm of day-to-day cost and time savings. Not only can it be used to produce interesting and previously impossible designs, it has also become a useful way to change spare parts management.

When a system goes down, making the repairs needed to get it back up and running can be time-consuming. Even more so if the part that needs replacing is no longer readily available. With the right program in place, additive manufacturing can build that part on demand—whether through reverse engineering, digital files from the component supplier, or perhaps through the supplier itself.

Read more

Aalto University develops 3D printing database to help conventional manufacturing make the switch

EIT Digital, a digital innovation, education community and accelerator of the European Institute of Innovation & Technology (EIT), has supported the creation of a 3D printing database. Developed to help manufacturers identify potential time and cost savings, the directory aims to encourage more businesses to switch to 3D printing instead of conventional methods.

Aalto University Finland created the database, which will be rolled out as a plugin for 3D data expert software from industrial partner DeskArtes, also based in Finland. Leading manufacturing company and 3D software developer Siemens created knowledge graphs for the system, ensuring logical links between all collected data.

The Big Data behind 3D printing

When developing under Industry 4.0, conventional manufacturing businesses are challenged with rethinking the way things are done. For 3D printing’s part in this, many stakeholders are rising to the aid of these businesses at a peak point of transition.

Read more

VELO3D: breaking barriers in metal AM with support-free 3D printing

After many years in stealth mode, California-based VELO3D emerged in August 2018 with the release of its end-to-end Sapphire metal 3D printer. The industry took notice. The system, based on the company’s Intelligent Fusion technology, gained significant attention for its promise of support-free 3D printing and production capabilities.

VELO3D interview

Since then, VELO3D has kept up momentum, showcasing applications for its metal AM system in various industries and working with influential players in the AM and aerospace industries, such as Stratasys Direct and Boom Supersonic.

We recently had an in depth conversation with VELO3D’s Chief Customer Officer Richard Nieset about the company’s unique 3D printing technology as well as how it aims to disrupt the metal AM and broader manufacturing markets with its capabilities. If there is one key thing to take away from the conversation, it is that VELO3D is delivering on its promises and is confident in its ability to transform and unlock AM applications, especially in the aerospace and industrial sectors.

Read more