Stratasys gears up face shield production for Covid-19

3D printing specialist Stratasys is aiming to produce 5,000 disposable face shields in the US alone by the end of this week (March 27) in the fight against the Covid-19 coronavirus.

face shield

The PPE equipment for medical personnel consists of a 3D printed plastic frame and a clear plastic shield that guards the entire face of the wearer, under which particulate face masks are usually worn for additional protection. One leading hospital informed Stratasys that it uses more than 1,500 of the face shields over the course of a regular week. The Covid-19 outbreak had reduced the hospital to just six days’ inventory of the equipment.

Read more

Bringing 3D printed medical models to life

Scott Drikakis, healthcare segment leader – Americas, Stratasys, explores how 3D printing could enable medical device manufacturers to overcome current limitations, improve clinical validation, and change the game of medical device testing.

The use of 3D printing in healthcare is not a new phenomenon. Those who keenly pay attention to technology developments within the sector will be unsurprised to hear of its use. In recent years, Stratasys has worked with customers across the world to improve patient care and communication, accelerate clinical validation and increase innovation. In Europe, hospitals such as CHU Bordeaux and Guy’s and St Thomas’ have utilized the very latest in advanced, multi-material 3D printing to create patient-specific 3D medical models to help plan complex procedures. Equally, customers such as Nidek Technologies have been able to dramatically accelerate clinical trials when incorporating 3D printing into the device testing process.

Stratasys.jpg

Despite these incredible advances, 3D printing has had its limitations in terms of organ realism and biomechanical functionality and, to date, has not offered a testing method which covers all problem areas. This means that many medical device manufacturers are still also reliant on traditional testing methods. These predominantly involve the use of human cadavers, animals or virtual modeling. However, as with the current 3D printing solutions available, each of these methods comes with their own distinct limitations. These can range from ethical concerns to lengthy and costly development processes. As a result, medical institutions are continuing to push for technological advancements to overcome such issues. To help make this a realization, it is essential to create a solution that can directly target the specific drawbacks that each of the traditional methods of testing have, as well as overcome the current limitations of 3D printing itself. The recently launched J750 Digital Anatomy 3D printer claims to address all of these issues. Through using advanced new materials and software, this printer can replicate the actual feel, responsiveness and biomechanics of human anatomy.

Read more

Rapid increase in end-use adoption to boost 3D printed drugs market revenue growth

3D printing was pioneered way back in 1986 but has recently begun to enter the public consciousness. Over the past ten years, it has blurred the boundaries between science fiction and fact. It is also known as Additive Manufacturing and is used in the automobile industry, aerospace & defence, retail and in the medical healthcare industry, amongst many others. A major component of this is the 3D printed drugs market. 3D printing helps make what was once expensive and inaccessible much more cost-effective. Can this be more apt and necessary anywhere else than in the field of medicine? 3D printing is already used to print artificial bones, to create surgical materials with 3D scans to replace a damaged or missing bone and even to create hearing aid devices. Skull implants have been made for people with head injuries and even titanium heels to replace bone cancer afflicted patients.

There are several factors which help the 3D printed drugs market to grow. One key advantage is their instantaneous solubility. 3D printed drugs are produced using powder bed inkjet printing. The elements of the drug are added in a layer by layer approach akin to 3D printing for any other device. This makes the drugs easier to swallow and can be very helpful for patients suffering from dysphagia. 3D printing could also augment the arrival of individualised drugs, or the creation of a combination of drugs. They could be customised for each patient, which would help much more than batch-produced drugs since they would be created specifically taking into account that patient’s medical history. The 3D printed drug market could also make children far less resistant to taking their required medication, since they may be able to choose the shape, colour, design and even taste of the tablet! These are anticipated to be the main drivers of the 3D printed drug market.

Read more

3D printing shaping the future of medical care

3D printing (additive manufacturing) is revolutionizing the very concept of manufacturing across just about every industry. But some of the most mind-blowing advances are taking place in the medical world.

How Is 3D Printing Used in Health Care?

Perhaps the least surprising – but most practical – use of 3D printers in the medical profession is the printing of medical equipment and instrumentation. Aid groups in Haiti, for example, have printed umbilical cord clamps and other medical devices to make up for supply shortages and affordability issues. Other instruments might include guides to assist with the proper surgical placement of a device.

3D Printed Heart

3D-printed implants have the potential to replace damaged or worn body parts as easily as a mechanic replaces the parts of a vehicle’s engine. Already, plastic or titanium implants such as cranial plates or hip joints are being printed and put to use.

Read more

3D printed body parts are beginning to change our medical industry

3D printing can definitely help to solve some of the problems that we have actually in the medical sector. For example, when a patient needs an organ for a transplant or a new skin tissue to heal an important wound, we have to wait for a donor. Waiting for a donor is a long process, but these patients don’t really have time to waste. That is precisely where the additive manufacturing technology can help them: it can use the patient’s cells to create a functional organ, an organ part or now, even a brand new skin tissue!

This process could really help accident victims and burned patients by providing viable skin grafts. It will be a real time-saving technique, and it will considerably ease the whole process as only one machine will be required. Donors and additional surgeries will not be needed anymore.

Read more

3D printed ears could help children with ear deformities avoid complex surgery

Children with ear deformities will soon be able to get printed ears made from their own stem cells, according to a team of Wollongong researchers working on new 3D bioprinting technology.

They claim their work represents a “huge breakthrough” in the field.

Two 3D printers sit in a lab.

The bio-printer, called 3D Alek, was developed at the University of Wollongong and is now being trialled at Sydney’s Royal Prince Alfred Hospital (RPA).
Read more

Medical 3D Printing: Where Are We Now?

In 2015, market research firm Gartner projected that medical 3D printing would become the pioneering field that would drive additive manufacturing (AM) into the mainstream in two to five years. Four years have passed, so we’ve decided to examine the industry to determine if Gartner’s predictions have come true.

Gartner’s 3D printing hype cycle curve from 2017, the most recent graph made public by the firm. (Image courtesy of Gartner.)

In this article, we’ll explore a handful of medical 3D printing stories from the past year to gain perspective on the level of adoption at which the technology stands.

Read more

Radiological Society of North America post guidelines for 3D printed anatomic models

3DPI reporting from the heart of Formnext 2016. Image shows full color 3D printed anatomical hearts by Stratasys. Photo via: Michael PetchA special interest group of the Radiological Society of North America (RSNA) has posted a set of guidelines, suggesting standard approaches for 3D printing in healthcare.

Recognizing the need for evidence-based recommendations in the sector, these guidelines have been developed over a period of two years, in review of over 500 recent papers published on the topic.

As the abstracts states, “The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D printable model, and post-processing of 3D printed anatomic models for patient care.”

Read more

3D printing part of an ‘unparalleled period of invention’

3D printing technology applications come alive in applications ranging from developing packaging machinery to producing personalized medical devices to printing custom medications in a patient’s home.

The FDA acknowledges that “advances in material science, digital health, 3D printing, as well as other technologies continue to drive an unparalleled period of invention in medical devices.”

Plastic grippers made via 3D printing. (Photo from igus.)

The perspective comes from a Nov. 26, 2018 statement by FDA Commissioner Scott Gottlieb and Jeff Shuren, Director of the Center for Devices and Radiological Health, outlining transformative new steps to modernize FDA’s 510(k) program to advance the review of the safety and effectiveness of medical devices.

Read more

3D printing poised to disrupt healthcare

Osseus Fusion Systems’ 3D printed titanium spinal implants won FDA clearance earlier this year, joining more than 100 devices and one drug currently on the market manufactured on 3D printers.

FDA Commissioner Scott Gottlieb has called 3D printing a transformative technology that could disrupt medical practice, and the agency is scrambling to keep abreast of new regulatory challenges.  ​

Known as additive manufacturing, the process involves production of three-dimensional objects using a digital file. The printer layers successive images or files on top of one another until a solid 3D object is formed. The process allows designers to create 3D models of a patient’s anatomy for use in diagnosis or surgical planning. The technology is also being used to customize orthopaedic implants and accessories, prosthetics, hearing aids, dental implants and wearables, such as flexible sensors. In the future, doctors may be able to bioprint skin cells to help heal burn wounds and print out replacement organs.

Read more