Could 3D printed microscopes improve water testing?

Manual tests for safe drinking water can be slow and error-prone. A team of academics is trying to change that

WaterScope creates 3D printed microscopes to test water quality.Like many people, Alexander Patto was keen to move away from academia after his PhD. He wanted a job that would have a tangible impact on the world, so when an opportunity came up to investigate water testing in the developing world, he jumped at the chance. Together with a team of academics from the University of Cambridge, Patto, a biologist, worked on a simple way of testing bacterial contamination in drinking water.

“The current systems are very slow and complex,” says Patto. To get a robust result “there is a lot of manual sampling”, which can also lead to “a lot of human error”, he says. “What we’re trying to do is make it very, very simple, so that anybody can do a test, regardless of their skillset [and the] resources available, and still get a result that is scientifically robust.”

Read more

From carpet floor to concrete floor: Desktop 3D printing’s impact on manufacturing

John Kawola, President, Ultimaker North AmericaThe manufacturing industry has always been directly impacted by the technological advancements of its time. From the advent of coal and steam as new sources of energy, the cotton gin and its impact on cloth manufacturers, and the assembly line for Ford, each has altered and benefitted the industry. As we enter Industry 4.0, a new batch of technology is shaping how, and how fast, we make goods. 3D printing is one such technology that is providing tangible benefits to those who implement it.

Desktop 3D printing, where users can design and print right at their desks or on the factory floor, has seen tremendous growth in the past several years, moving from strictly prototyping to actual production. The technology has opened huge possibilities for manufacturers, including quicker time to market, a reduction in costs, and an overall improvement in factory productivity

Read more

Radiological Society of North America post guidelines for 3D printed anatomic models

3DPI reporting from the heart of Formnext 2016. Image shows full color 3D printed anatomical hearts by Stratasys. Photo via: Michael PetchA special interest group of the Radiological Society of North America (RSNA) has posted a set of guidelines, suggesting standard approaches for 3D printing in healthcare.

Recognizing the need for evidence-based recommendations in the sector, these guidelines have been developed over a period of two years, in review of over 500 recent papers published on the topic.

As the abstracts states, “The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D printable model, and post-processing of 3D printed anatomic models for patient care.”

Read more

3D printing part of an ‘unparalleled period of invention’

3D printing technology applications come alive in applications ranging from developing packaging machinery to producing personalized medical devices to printing custom medications in a patient’s home.

The FDA acknowledges that “advances in material science, digital health, 3D printing, as well as other technologies continue to drive an unparalleled period of invention in medical devices.”

Plastic grippers made via 3D printing. (Photo from igus.)

The perspective comes from a Nov. 26, 2018 statement by FDA Commissioner Scott Gottlieb and Jeff Shuren, Director of the Center for Devices and Radiological Health, outlining transformative new steps to modernize FDA’s 510(k) program to advance the review of the safety and effectiveness of medical devices.

Read more

Catching up on 3D printing trends

GE locomotive valve gearThis collection of reports, books, and new items will get you up to speed on the 3D industry’s latest developments.

With so many developments in the additive manufacturing world to follow, I decided to use this article to compile some representative news items and reports. Taken together, they’ll provide you with greater insight into the most noteworthy 3D printing trends. The following features:

  • The latest edition of the 3D Hubs Online Manufacturing Trends report
  • Global Markets Insights’ report on 3D printing in the automotive industry
  • The importance of partnerships
  • New programs to stimulate 3D printing growth

Read more

Additive Manufacturing industrializes: A serious show shows a serious industry

Trade shows and conferences are time- and energy-intensive expeditions often requiring significant travel and expense. The best events prove their worth in bringing together the people who make an industry and the decision-makers who drive it — and in additive manufacturing, Germany is proving to be a destination of note each November.

Frankfurt drew 26,919 visitors and 632 exhibitors to the 2018 edition of formnext last week, perhaps the largest event on the calendar in additive manufacturing. With 49% international attendees and exhibitors representing 32 countries, formnext serves not only to provide some of the finest networking opportunities in this young industry but to act as a bellwether of some of the strongest trends in additive technologies. At this year’s edition — 25% larger than in 2017 but with 37,231 square meters of floor space already dwarfed by the 58,000 square meters announced for 2019 — formnext showcased an important trend in and of itself: additive manufacturing is big business.

Read more.

Machine Learning makes metal 3D printing more efficient

An aerial view of the Peter the Great St. Petersburg Polytechnic University. Image via mun: planetRussian researchers have used machine learning to make metal 3D printing more efficient.

3D printers require fine tuning of positioning and control algorithms using mathematical models to reach optimal performance. This is a lengthy and arduous process and it could take weeks to set printing parameters. Even then, the possibility of printing error is always present.

To overcome such problems scientists at the Laboratory of Lightweight Materials and Structures of Peter the Great St. Petersburg Polytechnic University (SPbPU) have developed a neural network for a metal 3D printer.

Read more

How will AI, blockchain and 3D printing change global supply chains?

This is the second of a two-part conversation with Gary Gereffi, director of the Global Value Chain Center at Duke University, on the future of global supply chains. In the first piece, we looked at the impact that protectionism is having on global value chains. Today, we focus on the impact of technology and the changing U.S.-China relationship.

BRINK: You’ve talked about how we should be thinking of value chains and supply chains in regional rather than global terms. Why?

Gary Gereffi: In complex industries, no single country has the capabilities to produce all of the parts of a product. If you take something like an automobile that has about 20,000 parts, the most efficient industries are actually set up on a regional basis. For example, the U.S. automobile industry is really a North American industry, where U.S. companies are very tightly intertwined with suppliers in Mexico, Canada and even Central America to form a regional supply chain that can produce a very large share of the components needed.

Read more

How will AI, blockchain and 3D printing change global supply chains?

This is the second of a two-part conversation with Gary Gereffi, director of the Global Value Chain Center at Duke University, on the future of global supply chains. In the first piece, we looked at the impact that protectionism is having on global value chains. Today, we focus on the impact of technology and the changing U.S.-China relationship.

BRINK: You’ve talked about how we should be thinking of value chains and supply chains in regional rather than global terms. Why?

Gary Gereffi: In complex industries, no single country has the capabilities to produce all of the parts of a product. If you take something like an automobile that has about 20,000 parts, the most efficient industries are actually set up on a regional basis. For example, the U.S. automobile industry is really a North American industry, where U.S. companies are very tightly intertwined with suppliers in Mexico, Canada and even Central America to form a regional supply chain that can produce a very large share of the components needed.

Read more

Warning signs in new 3D printing findings

“Following our series of studies – the most extensive to date on 3D printer emissions – we are recommending additional investments in scientific research and product advancement to minimize emissions and increased user awareness so safety measures can be taken,” said Marilyn Black, vice president and senior technical adviser at UL.

UL Chemical Safety and the Georgia Institute of Technology recently announced a body of research that explored the impact of 3D printing on indoor air quality. Following an in-depth, two-year research period with Georgia Tech, UL Chemical Safety found that many desktop 3D printers generate ultrafine particles while in operation, which may be a health concern since they are the size of nanoparticles and may be inhaled and penetrate deep into the human pulmonary system. The research also revealed more than 200 different volatile organic compounds, many of which are known or suspected irritants and carcinogens, are released while 3D printers are in operation.

Read more