Bringing 3D printed medical models to life

Scott Drikakis, healthcare segment leader – Americas, Stratasys, explores how 3D printing could enable medical device manufacturers to overcome current limitations, improve clinical validation, and change the game of medical device testing.

The use of 3D printing in healthcare is not a new phenomenon. Those who keenly pay attention to technology developments within the sector will be unsurprised to hear of its use. In recent years, Stratasys has worked with customers across the world to improve patient care and communication, accelerate clinical validation and increase innovation. In Europe, hospitals such as CHU Bordeaux and Guy’s and St Thomas’ have utilized the very latest in advanced, multi-material 3D printing to create patient-specific 3D medical models to help plan complex procedures. Equally, customers such as Nidek Technologies have been able to dramatically accelerate clinical trials when incorporating 3D printing into the device testing process.

Stratasys.jpg

Despite these incredible advances, 3D printing has had its limitations in terms of organ realism and biomechanical functionality and, to date, has not offered a testing method which covers all problem areas. This means that many medical device manufacturers are still also reliant on traditional testing methods. These predominantly involve the use of human cadavers, animals or virtual modeling. However, as with the current 3D printing solutions available, each of these methods comes with their own distinct limitations. These can range from ethical concerns to lengthy and costly development processes. As a result, medical institutions are continuing to push for technological advancements to overcome such issues. To help make this a realization, it is essential to create a solution that can directly target the specific drawbacks that each of the traditional methods of testing have, as well as overcome the current limitations of 3D printing itself. The recently launched J750 Digital Anatomy 3D printer claims to address all of these issues. Through using advanced new materials and software, this printer can replicate the actual feel, responsiveness and biomechanics of human anatomy.

Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.