Study: 3D printing may be harmful to humans

Several new studies found that 3D printers emit toxic particles that may be harmful to humans.

Female College Student Studying Engineering Using 3D Printing Machine

The studies, presented at the 2020 Society for Risk Analysis virtual Annual Meeting on December 15, showed that the particles released during the printing process can affect indoor air quality and public health.

For the uninitiated, 3D printers typically work by melting plastic filaments or other base materials such as nanoparticles, metals, thermoplastics etc. and then stacking the melted materials layer upon layer to form an object. When the plastic or other base materials are heated to melt they release volatile compounds into the air near the printer and the object.

Read more

Warning signs in new 3D printing findings

“Following our series of studies – the most extensive to date on 3D printer emissions – we are recommending additional investments in scientific research and product advancement to minimize emissions and increased user awareness so safety measures can be taken,” said Marilyn Black, vice president and senior technical adviser at UL.

UL Chemical Safety and the Georgia Institute of Technology recently announced a body of research that explored the impact of 3D printing on indoor air quality. Following an in-depth, two-year research period with Georgia Tech, UL Chemical Safety found that many desktop 3D printers generate ultrafine particles while in operation, which may be a health concern since they are the size of nanoparticles and may be inhaled and penetrate deep into the human pulmonary system. The research also revealed more than 200 different volatile organic compounds, many of which are known or suspected irritants and carcinogens, are released while 3D printers are in operation.

Read more

Scientists successfully printed 3D human heart tissue

Yale journal explores environmental and health impact of 3D printing technologies

As a bourgeoning technology with a world of potential, 3D printing is regularly referred to as the manufacturing technology of the future, and is hailed as having many environmental benefits over existing mass production processes.

And while some of its environmental advantages are difficult to deny—3D printing has, after all, opened up unprecedented possibilities for customized, local production—a new series of articles published in Yale’s Journal of Industrial Ecology suggest that the sustainable potential and environmental impact of 3D printing technologies are not quite as defined as many companies would like consumers to believe.

Read more

How far away are we from 3D printed drugs and medical devices?

pharma-3d-printed-drugs.pngDecades ago, we used to say technology was the wave of the future.  Today, with technologies such as additive manufacturing, we are living in the future.

Additive manufacturing, or 3D printing, is being used increasingly across numerous industries, from automotive to entertainment to pharmaceutical and medical device.

According to a recent report, North America is expected to account for the largest share of the global 3D printing medical device market in 2017, a global market which is projected to reach USD 1.88 billion by 2022 from USD 0.84 billion in 2017.

While 3D printing is here, the future holds many questions. As the use of 3D printing continues to expand in the pharmaceutical and medical device space, how the FDA regulatory regime and traditional products liability principles will evolve are among these questions.

Read more

Managing safety in AM facilities

This is a good white paper from UL on one of the main wider implications of 3D printing.  


The UL AM white paper, “Managing Safety in Additive Manufacturing Facilities,” is now available. In speaking with Norm Lowe, UL’s manager of AM facility safety services, the white paper is in response to the rapidly increasing demand to better understand AM safety considerations. “There so much growth within the industry that manufacturers need to understand the safety factors associated with AM, just as they would with any other manufacturing process. But unlike traditional manufacturing, that knowledge hasn’t been readily available,” states Lowe.

Though the white paper discusses safety issues in additive manufacturing, it specifically focuses on safety issues associated with metal AM. Lowe added, “The paper identifies the principle sources of risk associated with additive manufacturing, and then presents a methodology for establishing a safety management system or modifying an existing system in advance of the introduction of additive manufacturing capabilities. We also included recommendations on the development of safety assessments for additive manufacturing operations.”

Download Managing Safety in Additive Manufacturing Facilities now.  

The next pharmaceutical revolution could be 3D bioprinted

Body organs such as kidneys, livers and hearts are incredibly complex tissues. Each is made up of many different cell types, plus other components that give the organs their structure and allow them to function as we need them to.

For 3D printed organs to work, they must mimic what happens naturally – both in terms of arrangement and serving a biological need. For example, a kidney must process and excrete waste in the form of urine.

Read more

How 3D printing is transforming biomedical research and healthcare

3d-printing-healthcareOrgans-on-chip for drug testing, 3D-printed pills delivering personalised dosages of medication, low cost prosthetics and more

Yesterday the Dubai Health Authority announced that doctors had saved the life of a sixty-year-old Omani woman who suffered from a cerebral aneurysm, with assistance from a state-of-the-art custom 3D-printed model of the patient’s brain dilated arteries to help plan the complex surgery.

The patient was admitted to the hospital after suffering from severe bleeding in the brain. Due to the complexity and rarity of the patient’s case the doctors needed a 3D model that would allow them to understand exactly how to reach the arteries in a safe manner. Without the 3D model the surgery would have taken longer and the risk would have been higher.

Read more

Testing a soft artificial heart

It looks like a real heart. And this is the goal of the first entirely soft artificial heart: to mimic its natural model as closely as possible. The silicone heart has been developed by Nicholas Cohrs, a doctoral student in the group led by Wendelin Stark, Professor of Functional Materials Engineering at ETH Zurich. The reasoning why nature should be used as a model is clear. Currently used blood pumps have many disadvantages: their mechanical parts are susceptible to complications while the patient lacks a physiological pulse, which is assumed to have some consequences for the patient. “Therefore, our goal is to develop an artificial heart that is roughly the same size as the patient’s own one and which imitates the human heart as closely as possible in form and function,” says Cohrs.

A well-functioning artificial heart is a real necessity: about 26 million people worldwide suffer from heart failure while there is a shortage of donor hearts. Artificial blood pumps help to bridge the waiting time until a patient receives a donor heart or their own heart recovers.

Read more (including video)

The additive manufacture ancillary problem

There is a problem surrounding the additive manufacturing (AM) and 3D printing (3DP) industry that is rarely discussed, but is not going away any time soon.

I would be the last person to dispute the amazing capabilities of AM and 3DP hardware systems used for industrial applications. The ability to build complex parts in one piece and the advantages this brings of increased strength, lighter weight, reduced material consumption and assembly component consolidation for an increasing range of applications are all well documented.

The focus tends to be on the hardware, but this does not convey the full picture of what is required to get that part ‘off the machine’.

Read more