Dynamic platform cuts 3D printing waste by 35%

A dynamically controlled surface with moving metal platforms can cut material usage in 3D printing by reducing the need for “wasteful” printed supports, its developers have said.

The dynamically controlled surfaces (a) reduce the need for printed supports (b) to cut waste material (Credit: Yong Chen)

Printing times could also be shortened thanks to the new technique, said the researchers from the University of Southern California (USC).

As conventional 3D printers create custom objects layer-by-layer, they often need to print supports to balance the product. These supports are manually removed after printing, which requires finishing by hand and can result in shape inaccuracies or surface roughness. The materials the supports are made from often cannot be reused, so they are discarded and contribute to the growing problem of 3D-printed waste material.

Read more

Large-scale 3D printing used for latest Airbus satellites

Large-scale 3D printing used for latest Airbus satellites

“…Utilising 3D printing for the Eutelsat Hotbird satellites provides major labour savings and significantly reduces the number of individual required parts, according to Gareth Penlington, the Hotbird payload manager at Airbus: “This is recognised as the first large-scale deployment of RF products using the ALM process, and it puts us in an industry-leading position for the technology’s application in producing radio frequency components.”

Read more

3D printing system used to accelerate tissue engineering research at The University of Sheffield

Formlabs, a 3D printing system manufacturer, and Dr Sam Pashneh-Tala, Research Fellow at the University of Sheffield, have developed a 3D printing technique for complex artificial blood vessels which can aid surgery for cardiovascular disease.

Conventional surgical treatments for cardiovascular disease rely on autografts, which require invasive surgery. Synthetic vascular grafts made from polymer materials are also available, but these are prone to infection and blood clotting, especially in smaller diameter vessels. A new technique is needed, and this is where tissue engineering fits in, enabling new blood vessels to be grown in the lab and then used for implantation.

Read more