Shell to enable digital warehouse by 3D Printing of spare parts

Shell, the British-Dutch multinational Oil and Gas Company, is leveraging spare parts 3D printing to foray into digital warehouse. The company aims to focus on the revolutionary 3D printing technology to optimise its repair and replacement strategies and ultimately enable a digital warehouse approach to spare part management.

Shell believes the technology can reduce the costs, delivery time and the carbon footprint of spare parts and so it is collaborating with industry leaders to push the innovation of 3D printing for the energy sector.

Spare Parts 3D printing

Shell’s in-house 3D printing capability started in 2011 with a metal laser-printing machine to fabricate unique testing equipment for laboratory experiments at the Shell Technology Centre Amsterdam (STCA). Today, Shell has about 15 polymer, ceramic, and metal printers located at its technology centres in Amsterdam and Bangalore.

Read more

3D printing is closing the door on physical warehouses

3D printing is set to make space-hungry centralised storage centres a thing of the past for many products, and eliminate the need for expensive distribution systems.

In the not too distant future, manufacturing may no longer be associated with warehouses filled with stacks of finished products waiting for shipment. Instead, on-demand 3D printing which requires little storage space will allow manufacturers to generate parts to order and reduce overheads by moving production closer to the intended market, shortening the length of the supply chain.

Empty warehouse

The technology is also well suited for low-volume and customised products, particularly replacement parts. Shifting this sort of work from factory floors to 3D printers would free up manufacturers to focus their time, energy and talents on other goods. What part does a digital warehouse play in this transition, where do you begin creating one, and how can industry help to pave the way?

Read more

3D printing is closing the door on physical warehouses

3D printing is set to make space-hungry centralised storage centres a thing of the past for many products, and eliminate the need for expensive distribution systems.

In the not too distant future, manufacturing may no longer be associated with warehouses filled with stacks of finished products waiting for shipment. Instead, on-demand 3D printing which requires little storage space will allow manufacturers to generate parts to order and reduce overheads by moving production closer to the intended market, shortening the length of the supply chain.

Empty warehouse

The technology is also well suited for low-volume and customised products, particularly replacement parts. Shifting this sort of work from factory floors to 3D printers would free up manufacturers to focus their time, energy and talents on other goods. What part does a digital warehouse play in this transition, where do you begin creating one, and how can industry help to pave the way?

Read more

Byte your inventory and beat the system

All in all, if you’re a supply chain manager not already harnessing the benefits of AM, then it’s worth taking a closer look at what the technology can do for you. You might be pleasantly surprised by what you find.

In a previous column, I discussed the basic advantages and challenges of additive manufacturing (AM, a.k.a. 3D printing) when it comes to the supply chain. We centered around the main characteristics of AM technology, namely production one layer at a time, on demand, and with a minimum batch size of just one. One of the main game changers that AM enables is virtual inventory and this piece will delve a bit deeper into this aspect as well as its implications in today’s complex and volatile geopolitical climate.

In traditional supply chains the parts are kept physically in inventory after they have been manufactured and passed QA. The costs and issues surrounding storing large amounts of physical inventory are very familiar to supply chain managers. Conversely, with virtual inventory, items are kept digitally until they are ordered. When an order arrives, the item is retrieved from the virtual inventory and additively manufactured. Then, the resulting (physical) item can join the existing logistics set up and be delivered to its final destination, as with the physical inventory case. Holding your inventory in digital files rather than physical items and producing them on demand, close to the demand, using AM, has been called Distributed Additive Manufacturing (DAM) and it presents many benefits.

Read more