There’s “huge potential” for 3D printing inside aircraft cabins

ZAL Tech Center.JPG

ZAL Tech Center played host to this year’s Red Cabin Aircraft Cabin AM Conference.

I’ve said it before, since working in additive manufacturing I’ve adopted a bit of a habit of playing “spot the additive application” whenever I board a plane. Great for editorial, but quite annoying, I would imagine, for my other half whenever we go on holiday.

ZAL Tech Center.JPG

The same happened last week as I hopped on a flight to Hamburg for the second Red Cabin Aircraft Cabin Additive Manufacturing conference. As I settled into the brash yellow and blue my seats of my budget aircraft (the glamorous life of the media), I began circling with imaginary red pen all of the areas where AM might find a useful home from the tens of assembled parts I could see in the arm rest mechanism to the unnecessary tray tables that had been bolted shut to restrict use in the rows of emergency exit seats (it’s really almost TOO glamorous).

Two ferry rides later, it was exactly those types of applications that a collective of aerospace specialists and additive experts had gathered at the ZAL Tech Center, south of the River Elbe, to explore. If being privy to two days worth of brain storming sessions with a bunch of 3D printing-literate engineers shows you anything, it’s that those far flung ideas like personalised seats and bionic bathrooms are not a million miles away from reality. Though the suggestion of a real-life RoboCop may be taking things a little too far.

Read more

Pratt & Whitney 3D prints aero-engine MRO component with ST Engineering

“3D printing will be a game-changer for the MRO industry worldwide.”

Pratt & Whitney is set to introduce a 3D printed aero-engine component into its maintenance, repair and overhaul (MRO) operations by mid-2020 after a successful collaboration with ST Engineering.

ST Engineering MRO

The two companies came together to leverage 3D printing technology to facilitate faster and more flexible repair solutions, with contributions also coming from Pratt & Whitney’s repair specialist Component Aerospace Singapore.

Component Aerospace Singapore provides engine part repair for combustion chambers, fuel systems and manifolds; ST Engineering boasts ‘production-level 3D capabilities’ and experience applying 3D printing in land transport systems; and Pratt & Whitney is a specialist in design and engineering.

Read more

How 3D printing is being improved using advanced non-destructive testing

I’ve spent 30 years optimizing materials for use in aerospace and automotive applications, looking at how we design, make and use them. My latest research focuses on the additive manufacturing (AM) of alloys for use in aerospace applications. We’ve received a £2.6 million (US$3.2 million) grant for the next ten years which will enable us to develop AM alloys for industrial applications. We’re using one of the world’s most advanced tools to help investigate the challenges associated with AM alloys – Diamond Light Source the UK’s National synchrotron science facility at Harwell near Oxford. The synchrotron lets us see inside the alloys as the AM machine makes components. 

The synchrotron emits electrons at the speed of light and bends them using electromagnetics to create a continuous beam of light at wavelengths from near infrared to hard x-rays. At the point where the beam of electrons bends it gives us a flux of light up to 10 million times brighter than the sun. 

Read more

The 3D printing promise of weight optimization is not about parts, it’s about systems

A key lesson learned talking with aerospace 3D printing companies at PAS 2019, that can be applied to all industrial segments

The Paris Air Show was a huge success for the largest aerospace players and for many innovative aerospace 3D printing companies. The aviation and space industries are rocketing toward booming growth with no slow down anywhere on the horizon. While additive manufacturing is still just a tiny – to use a euphemism – segment of aerospace manufacturing, all leading companies in aerospace are very much invested in developing it. The reason may be found in one of the largest deals ever closed during the show: the $55 billion in orders that CFM – a joint venture between GE and Safran – received for its LEAP engine. The LEAP engine is super efficient and is enabling a new generation of single-aisle jets – such as the Airbus321neo flown by French operator Le Compagnie in its new all-business flights – to make trips across the Atlantic on a single tank of fuel.

Last April, for instance, a LEAP-engine-powered Airbus A321neo LR loaded with 162 dummy passengers and 16 crew completed a test flight from Airbus headquarters in Toulouse, France, to the Seychelles islands in the Indian Ocean that lasted 11 hours and covered 5,466 miles. It was the longest distance flight in the certification process of the A321neo. At the Paris Air Show Airbus formally unveiled a new long-range A321neo, officially designated the A321XLR, which will become available from 2023. The twinjet will have a maximum take-off weight of 101t and a range of 4,700nm compared with the 4,000nm of the current 97t long-range A321LR variant. GE and most operators expect that these efficient single-aisle aircraft will make up the bulk of order for the foreseeable future.

Read more

Aerospace giant embraces 3D printing for flight-ready parts

Marshall Aerospace and Defence Group has turned to 3D printing to create flight-ready parts at a fraction of the cost and time involved in using traditional manufacturing methods.

Aerospace giant embraces 3D printing for flight-ready parts

The Cambridge-based firm’s latest innovation programme is pushing technological boundaries to reduce weight and increase performance on its fleet of military, civil and business aircraft.

It originally looked at metal additive manufacturing as a solution before discovering that the quality of Stratasys polymer technology – supplied by SYS Systems – could deliver the quality of materials it needed to satisfy industry regulations.

Read more

3D printing applied to MRO of F/A-18 Hornet by U.S. Marines

A pilot looks out of the canopy of his F/A-18F Super Hornet aircraft. U.S. Navy photo by Cmdr. Ian C. Anderson

At the U.S. Marine Corps Air Station (MCAS) Iwakuni, southern Japan, 3D printing is now in use to keep F/A-18 Hornet multirole fighters airborne.

MCAS Iwakuni engineers have devised two products that reduce the time it takes to repair the fighter jets, saving costs for the U.S. Department of Defense. The products help with the maintenance, repair and overhaul (MRO) of the fighter jets, covering all tasks carried out to ensure the airworthiness of an flight vehicle.

The 3D printed products include an engine ship kit, designed by the Marine Aviation Logistics Squadron 12 (MALS 12), and a plastic ring kit that helps the maintenance of the bearings on the F/A-18’s Gatling gun. 

Read more

3D Printing takes off in Aerospace

Aerospace has aggressively embraced 3D printing. The industry seeks parts that are lighter without sacrificing strength, and 3D printing meets that challenge.

aerospace, 3D printing, boeing, stratysis, GE Aviation, Airbus, Spirit AeroSystems, Aurora Jet, Lockheed Martin, SpaceX

The aerospace industry was among the first advocates of 3D printing. The airline industry as well as the space industry have been the force behind the evolution of this technology, both manufacturing end-use parts and for prototyping. Aerospace depends on 3D printing to alleviate supply chain constraints, limit warehouse space, and reduce wasted materials from traditional manufacturing processes. The ability to rapidly produce parts on demand has brought unexpected efficiency to the industry.

Here are some shiny examples of how aerospace has utilized 3D printing.

Read more

Daimler, partners launch 3D printing pilot

Daimler and two specialist partners have put into operation a pilot plant that uses 3D printing technology to make components for the automotive and aerospace industries.

The German premium car group worked on the project, which is called NextGenAM, with Premium Aerotec, which develops and produces metal and carbon fiber composite aircraft structures, and EOS, a 3D printing specialist.

The pilot plant, located at a Premium Aerotec facility in Varel in northern Germany, operates various machines for additive manufacturing, post-processing, and quality assurance. The production chain is fully automated, which is a key factor in lowering costs.

Read more

U.S. Marines 3D print F-35 part to save US$ 70,000

A team of U.S. Marines 3D printed a part for the F-35 stealth fighter saving $70,000 in costs for a whole new landing gear door.

The landing gear of F-35A Lightning II. Photo via the Eglin Air Force Base

The component is a small part mounted on the door pressing it into the latch. It was designed and 3D printed by Marines from Combat Logistics Battalion 31 (CLB-31) in Carderock, Maryland.

Sam Pratt, a mechanical engineer at the Carderock’s Additive Manufacturing Project Office, provided further technical assistance to the team.

Read more

Boeing invests in 3D-printed parts in wake of supplier shortfalls

Boeing has pledged to deliver 800 airliners this year, more than ever before, but a main hiccup causing delays is supplier shortfalls. 

New technology from startup companies like Digital Alloys could give Boeing more control over its supply chain. Boeing spokesperson Vienna Catalani told Supply Chain Dive the company is not yet certain how and if it will integrate Digital Alloys’ specific technology, but whether used internally at Boeing or in the hands of suppliers, 3D printers can produce metal parts faster and cheaper than traditional methods.

Read more