US propulsion system manufacturer Aerojet Rocketdyne has optimized a key component of its Reaction Control System (RCS) quad thruster using additive manufacturing and nTopology’s engineering software.
Aerojet Rocketdyne’s new space engine part is now 67 percent lighter while also reducing the overall production cost of the thruster by 66 percent to enable faster and more sustainable lunar exploration.
“If we leverage the advantages that we made over the last decade in engineering software and manufacturing hardware, we can build critical subsystems at fractions of the traditional cost while improving on the performance of heritage designs,” said James Horton, Mission Architect at Aerojet Rocketdyne.
GE Aviation has projected cost savings of 35% after switching the production of four land/marine turbine bleed air parts from casting to metal 3D printing.
The aerospace company worked with GE Additive to additively manufacture the four bleed air components, with the cost savings expected to be enough to retire the old casting moulds forever. Harnessing 3D printing, GE Aviation also saw significant time reductions through the conversion process, getting to a final prototype inside ten months, where as it has previously taken between 12 and 18 months when developing turbine parts.
Manufacturing system provider Ingersoll Machine Tools has partnered with aviation company Bell to 3D print a 22 foot-long vacuum trim tool – a mold used for the production of helicopter rotor blades.
The project, which resulted in major lead time savings, was completed using Ingersoll’s own large-format hybrid MasterPrint system, a gantry-based 3D printer with integrated 5-axis milling functionality. According to Ingersoll, the MasterPrint is the largest polymer 3D printer in the world. Designed specifically for the production of extra-large production parts, the system can be found at Ingersoll’s headquarters in Rockford, IL.
“We are continuously testing and advancing MasterPrint in our Development Center” said Chip Storie, CEO at Ingersoll. “Among Ingersoll’s short-term objectives is for MasterPrint to 3D print molds for aerospace that preserve the geometrical properties and tolerances, vacuum integrity and autoclave resilience normally obtained with traditional technology, but with the cost and time reduction only additive manufacturing can offer. The relentless progress our MasterPrint process has made in 2020 has finally made this target attainable.”
Swedish aerospace and defense company Saab has successfully conducted a flight test that has shown how additive manufacturing can be used to repair battlefield damage on its Gripen fighters.
The test flight, which took place at Saab’s facilities in Linköping, Sweden on March 19 marks the first time an exterior 3D-printed part has been flown on a Gripen, rather than internal 3D-printed components.
The Gripen was fitted with a replacement hatch that had been 3D-printed using additive manufacturing, using a nylon polymer called PA2200.
The project is a step towards 3D-printed spares being used for rapid repairs to fighter aircraft that have sustained damage while deployed on remote operations, thereby gaining a vital time-saving advantage, said Saab.
Relativity Space has the audacious goal of 3D printing 95 percent of a rocket and sending it to orbit. Getting to space is hard. But completely reinventing how rockets are manufactured at the same time? Harder. Six-year-old upstart Relativity may nail both by the end of this year.
After several years designing, building, and testing their Terran 1 rocket, they’re nearly ready to roll. This week the company gave Ars Technica a progress report—and included a pretty visual.
Norsk Titanium delivered new Boeing 787 Dreamliner components to Leonardo’s Grottaglie Plant, based in South Italy and part of Leonardo’s Aerostructures Division. Norsk is a Norwegian-American firm providing additive manufacturing of aerospace-grade titanium components (using proprietary RPD technology).
This delivery adds a third production customer to Norsk’s growing commercial aerostructures customer base and represents Norsk’s first recurring production order from a European Union based Aerospace company.
“We are pleased to be Leonardo’s supplier,” said Karl Fossum, director of customer programs for Norsk. “This delivery marks a significant increase in the number of additively manufactured parts previously manufactured from titanium plate. It also is an important step towards our mission to provide an alternative to titanium forgings in aerospace applications.”
Honeywell Aerospace, the aerospace division of conglomerate Honeywell, has received a Federal Aviation Administration (FAA) certification for its first 3D printed flight-critical engine component. The part in question – a #4/5 bearing housing – is a key structural component of the ATF3-6 turbofan engine found in the Dassault Falcon 20G maritime patrol aircraft. The part is already in production and has been installed in an operational Falcon unit, with dozens more expected to be printed by the end of the year.
Jon Hobgood, Vice President of Manufacturing Engineering at Honeywell Aerospace, states: “This is a major milestone for Honeywell because it demonstrates the maturity of our Additive Manufacturing operations and paves the way for us to print more certified, flight-critical parts in the future. It also is a major win for the additive industry, as flight-critical parts face heavy scrutiny and high standards for qualification and installation on aircraft, but this shows it can be done.”
UK-based global major aerospace and defence group BAE Systems (BAES) has reported how the latest technologies are being used to drive forward, with unprecedented speed, Britain’s next-generation combat air system programme. Known as Tempest, this project is really benefitting from and making full use of digital twinning and three-dimensional (3D) printing (also known as additive manufacturing) technologies.
Digital twinning involves creating, in a computer system, an exact but virtual duplicate of a real-world entity and of all its systems, subsystems and components. Except that the real-world entity does not actually have to exist yet, as is the case with Tempest. The virtual duplicate can then be subjected to all sorts of simulated tests and evaluations, accelerating the design process while reducing costs.
ZAL Tech Center played host to this year’s Red Cabin Aircraft Cabin AM Conference.
I’ve said it before, since working in additive manufacturing I’ve adopted a bit of a habit of playing “spot the additive application” whenever I board a plane. Great for editorial, but quite annoying, I would imagine, for my other half whenever we go on holiday.
The same happened last week as I hopped on a flight to Hamburg for the second Red Cabin Aircraft Cabin Additive Manufacturing conference. As I settled into the brash yellow and blue my seats of my budget aircraft (the glamorous life of the media), I began circling with imaginary red pen all of the areas where AM might find a useful home from the tens of assembled parts I could see in the arm rest mechanism to the unnecessary tray tables that had been bolted shut to restrict use in the rows of emergency exit seats (it’s really almost TOO glamorous).
Two ferry rides later, it was exactly those types of applications that a collective of aerospace specialists and additive experts had gathered at the ZAL Tech Center, south of the River Elbe, to explore. If being privy to two days worth of brain storming sessions with a bunch of 3D printing-literate engineers shows you anything, it’s that those far flung ideas like personalised seats and bionic bathrooms are not a million miles away from reality. Though the suggestion of a real-life RoboCop may be taking things a little too far.
“3D printing will be a game-changer for the MRO industry worldwide.”
Pratt & Whitney is set to introduce a 3D printed aero-engine component into its maintenance, repair and overhaul (MRO) operations by mid-2020 after a successful collaboration with ST Engineering.
The two companies came together to leverage 3D printing technology to facilitate faster and more flexible repair solutions, with contributions also coming from Pratt & Whitney’s repair specialist Component Aerospace Singapore.
Component Aerospace Singapore provides engine part repair for combustion chambers, fuel systems and manifolds; ST Engineering boasts ‘production-level 3D capabilities’ and experience applying 3D printing in land transport systems; and Pratt & Whitney is a specialist in design and engineering.