Stratasys: “Manufacturers now see 3D printing as a staple part of the industrial production floor”

On the occasion of the 20th anniversary of our publisher, the industry sourcing company DirectIndustry, we are celebrating 20 years of industrial innovations by giving the floor to the players that brought these innovations to life. In this interview, we focus on 3D printing. Eric Bredin, VP Marketing, Stratasys, EMEA, gives his insights into 20 years of innovations in additive manufacturing and 3D printing technology.

DirectIndustry magazine: 30 years ago, you went into an industrial sector, 3D printing, that was unoccupied: why and how?

Eric Bredin

Erin Bredin: Thirty years ago, Stratasys saw the potential 3D printing could bring to the manufacturing world and has since developed its Fused Deposition Modeling (FDM) technology to fit production needs of various industries. FDM offered manufacturers a tool that was lacking until then – the ability to produce small series or customized parts in-house quickly and cost-effectively. Today, many manufacturers see 3D printing – or additive manufacturing – as a staple part of the industrial production floor, replacing certain conventional manufacturing technologies or offering a complementary tool for production. 

Read more

Is 3D printing a magic bullet for supply chain at the time of COVID-19 pandemic?

The novel coronavirus disease or COVID-19 pandemic has clearly illustrated the vulnerability of conventional global supply chains. Over the past decade, natural disasters, including the eruption of the Eyjafjallajökull volcano in Iceland in 2010, the Japanese earthquake and tsunami in 2011, the Thailand floods in 2011, the category five hurricane Maria in 2017, and the category four hurricane Harvey in 2017, resulted in major disruptions to company supply chains. Although the global supply chain and the majority of companies recovered from these natural calamities, the overemphasis of firms on cost-cutting measures by concentrating on production overseas through manufacturing clusters has caused many of the current problems, such as vast shortcomings in the supply of much-needed medical and non-medical products required to fight the COVID-19 pandemic. As a result, there is unavailability of personal protective equipment (PPE) for medical workers, scarcity of ventilators for patients, inadequacy of sanitiser liquid, and shortage of test kits for the public.

covid-19.jpg

Bans issued by countries on the export of PPEs and products critical to fighting the pandemic have caused the global supply chains to collapse. These instances illustrate the fragility of the global supply chains amid a large disruption.

Read more

New SmarTech Report: AM service bureaus to support reshoring and supply chain recovery

SmarTech Analysis has published a new report on the state of metal 3D printing service bureaus dubbed “The Market for Metal Additive Manufacturing Services: 2020-2029.” The report illustrates the current picture of the metal additive manufacturing (AM) service market and projects the future revenue opportunities that will emerge by relying on a robust set of quantitative data. Though the report provides a comprehensive look at the industry, it is being framed as particularly valuable given the major disruptions that the COVID-19 outbreak has had on the global supply chain.

Nearly all products are made in a centralized manner, with individual components made in one set of factories and shipped to others to be assembled. As nations have shut down their borders in order to limit the spread of the highly contagious coronavirus, starting with China, the globalized economy was quickly disrupted. 94 percent Fortune 1000 companies were reported as seeing their supply chains impacted in response to the pandemic, just as it was reaching its peak impact in China.

Read more

3D Printing enters ‘game-changing’ era as supply shortages spark creative solutions

Digital manufacturing is filling holes during the pandemic with traditional production lags

As social distancing measures were ramping up in late March, freelance creative director Tito Melega and German product designer Amine Arezki had a flash of inspiration during an impromptu lunchtime Zoom gathering hosted by a mutual friend.

Arezki was discussing the use of 3D printing to help fill some of the shortages in medical masks caused by the COVID-19 pandemic. Melega happened to sit on the advisory board of a Knoxville, Tenn.-based 3D printing startup called Ascend Manufacturing.

Soon, the pair of previous strangers were holding daily Zoom discussions along with Ascend CEO and founder Justin Nussbaum. They fleshed out an idea for an open-source 3D-printable mask design, culminating in a project called A Mask For All.

Read more

Has 3D printing’s hour finally come?

“Our digital manufacturing partners are working non-stop in the battle against this unprecedented virus.”

Additive manufacturing, or 3D Printing has long been trumpeted as the lodestar of a “Fourth Revolution”. In reality, uptake has been limited, it remains somewhat niche, and hype has not met market expectations. Yet as the world grapples with the COVID-19 pandemic, the 3D printing industry and hobbyists alike are stepping up to help ease the supply chain disruptions by creating and printing urgently needed components.

The major issue for healthcare workers at the moment is the overwhelming numbers of people that are in urgent need of oxygenation; requiring ventilators so they can breathe long enough for their immune system to fight off the worst of the virus.

Read more

3D Printing and the Supply Chain

Additive manufacturing, or 3D printing, has been around in one shape or form for a while. The process essentially entails building a three-dimensional object from computer-aided design (CAD) to add material layer by layer until a final product is complete. The use cases for 3D printing cover most anything you can imagine. In fact, recently, while on a weekend ski trip with friends, my buddy John was riding the chairlift with two women from France who worked for a company that specialized in 3D printing human organs. However, these 3D printed organs were not meant to be used for transplants. Instead, these 3D printed organs were used as replicas of human organs to practice complex surgeries.

3D printing

This conversation got me thinking about the pros and cons of 3D printing, and how as supply chain professionals, it fits into our everyday lives. In the grand scheme of things, 3D printing’s effect on the supply chain can be summarized as the following: warehouses no longer need to keep as many parts in stock. The rationale is that the parts can simply be printed on an as-needed basis. Along these lines of thinking, this would seem to be especially true for the replacement parts industry. However, does this actually make sense and is it a soon-to-be reality?

Read more

Technology outlook 2030: opportunities and threats for shipping

Digitalisation technologies will transform maritime industries on a global scale over this decade in positive and negative ways

[…]

DNV GL suggests a surge in 3D printing adoption and technology development could reduce demand for seaborne trade in its Technology Outlook 2030.

IoT technology will enable shipping to link with supply chains

In a future supply chain, files could be sent via printing platforms instead of spare parts for printing locally. This could be potentially disruptive for supply chain participants, such as shipping companies and tax authorities.

Upsides could include shortened lead times, lifecycle and working capital cost reductions and a lower carbon footprint due to less transportation.

DNV GL forecasts that perhaps up to 85% of spare part suppliers may have incorporated 3D printing by 2030, leading to a 10% reduction in seaborne trade of semi-manufactured parts in 2040.

Read more

The 2020 vision for 3D printing and digital manufacturing

“3D printing and digital manufacturing is driving a world with less waste, less inventory and lower CO2 emissions.”

George Brasher, HP’s UK & Ireland MD says the next year, and decade, will be an exciting time for additive manufacturing. 

GeorgeBrasher.JPG

2020 is set to be the year when the potential of 3D printing is realised across more industries. We’ve seen in the previous decade how 3D tech has turned traditional production models and workflows on their head, offering on-demand, bespoke manufacturing –  and presenting us with a modern model of the artisan age. This is only going to develop further as we begin this new decade.

So what are the key trends to watch out for, and where will we see the 3D industry focus its attention in 2020?

Read more

Don’t let a few cool 3D printing use cases make it Industry 4.0’s poison chalice

3D printing lies at the bottom of service providers’ Industry 4.0 technology offerings; there are many challenges left unsolved if it’s going to surpass cool use case videos to be the production process of the future. Providers are showing signs of solving these challenges alongside their manufacturing partners, but manufacturing execs shouldn’t go in with guns blazing before guaranteeing rapid innovation in the short-term and concrete value in the long-term. Equally, they can’t be complacent and fail to have the capability and partner network ready-to-go when the technology booms—or they’ll be playing catchup, making expensive purchases, and signing one-sided contracts with vendors.  

Source: HFS Industry 4.0 Services Top 10 2019 

HFS’ Industry 4.0 Services Top 10 for 2019 asked leading providers to rate the maturity of their offerings across Industry 4.0’s core enabling technologies (see Exhibit 1). Unsurprisingly, predictive analytics and AI applications, big data, and IoT are the most mature segments. IoT provides real-time data flow, on top of which data analysis can derive insight and with that, value. While aspects of robotics and small-batch manufacturing are still emerging, they’ve been around for decades and are moving along the maturity scale; we cannot say the same of 3D printing. 

Read more

How SA can build on 3D printing

Last year, the Ramdani family in France, became the first in the world to move into a three-dimensionally-printed house.

A team of scientists and architects designed their comfy 95m² home in a studio, with the design programmed into a 3D printer. This was then brought to the site of the home and printed in layers from the floor upwards. After just 54 hours, the Ramdani family had a new four-bedroomed home.

But France isn’t the only country, which has embraced 3D technology to solve its housing issues.

Read more